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abstract

We formally evaluated the relationship between landscape characteristics and

surface water quality in the state of Pennsylvania (USA) by regressing two

different types of pollutant responses on landscape variables that were mea-

sured for whole watersheds. One response was the monthly exported mass of

nitrogen estimated from field measurements, while the other response was a

GIS-modeled pollution potential index. Regression models were built by the

stepwise selection protocol, choosing an optimal set of landscape predictors.

After factoring out the effect of physiography, the dominant predictors were

the proportion of “annual herbaceous” land and “total herbaceous” land

for the nitrogen loading and pollution potential index, respectively. The

strength of these single predictors is encouraging because the marginal land

cover proportions are the simplest landscape measurements to obtain once

a land cover map is in hand; however, the optimal set of predictors also in-

cluded several measurements of spatial pattern. Thus, for watersheds at this

general hierarchical scale, gross landscape pattern may be an important in-

fluence on in-stream pollution loading. Overall, there is strong evidence that

using landscape measurements alone, obtained solely from remotely sensed

data, can explain most of the water quality variability (R2 ≈ 0.75) within

these watersheds.

key terms: landscape patterns, nutrient loading, pollution potential,

water quality, watersheds, multi-scale relationships
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1 Introduction

Ecological heirarchy theory establishes a framework for explaining how large-

scale characteristics of ecosystems can constrain smaller-scaled characteristics

(Urban, O’Neill and Shugart, 1987; O’Neill, Johnson and King, 1989). An

example of such an inter-scale environmental relationship is the influence of

gross land use characteristics on local surface water quality. Indeed, for all

the improvements in water quality associated with modern controls on point-

source discharges, local water quality is still constrained by non point-source

pollution. Since land use is generally reflected by land cover (vegetation

type), then whole watersheds may be evaluated with respect to water qual-

ity risk by characterizing land cover proportions and patterns (O’Neill, et al.,

1997). Watershed-wide landscape characteristics that are significantly corre-

lated with local water quality may then serve as landscape-scale indicators of

environmental condition, as also sought by other researchers (Aspinall and

Pearson, 2000; Jones, et al, 1997).

A common theme that appears to arise from previous research in this area

is that as a watershed gets larger, corresponding to higher order drainage

basins, land cover proportions alone explain most of the water quality vari-

ability; whereas for smaller watersheds, especially those for first order head-

water streams, the spatial pattern of land cover becomes more important

(Graham, et al., 1991; Hunsaker and Levine, 1995; Roth, Allan and Erickson,

1996). This indicates that the feasibility of using watershed-wide marginal

land cover proportions and/or spatial pattern measurements for predicting

water quality depends on the hierarchical scale of a watershed.

This article presents an evaluation of the relationship between surface

water pollution loading and landscape characterstics for watersheds in the

state of Pennsylvania (USA) that are each about 1/100th the size of the

state. Using data from previous studies, linear models were developed for
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choosing an optimal set of landscape predictors that constituted both land

cover proportions and pattern measurements.

2 Surface Water Pollution Assessment

2.1 Nitrogen Loading

A recent study (Nizeyimana, et al., 1997) was conducted to assess surface-

water nutrient loading in Pennsylvania watersheds. The primary purpose

was to quantify the various sources of non-point source (NPS) nutrient load-

ing. Watersheds, as seen in the top of + 5, were delineated by choosing

85 Water Quality Network stations throughout Pennsylvania, then aggregat-

ing detailed sub-watershed boundaries that were previously digitized by the

United States Geologic Survey. Each resulting NPS watershed then drains

to one of the 85 network stations. As part of this study, total levels of

both Nitrogen and phosphorous were obtained for each watershed by apply-

ing flow-weighted averaging techniques to monthly in-stream concentrations

from the previous 5 years. The result is an estimate of the monthly exported

mass in kilograms (kg).

[Figure 5 about here]

Meanwhile, Johnson, et al. (in press) obtained landscape measurements

on a different set of watersheds that are based on the state water plan, as

discussed in section 3 and delineated in the bottom of Figure 5. Since there

was not a perfect matching between the two watershed delineations, some of

the NPS watersheds were aggregated to equal the area of a state water plan

watershed, as identified in the top of Figure 5. These watersheds are then

added to those for which there is an exact or very close match with the state

water plan-based watersheds and the final set are shaded in the bottom of

Figure 5. The result is a sample of 30 watersheds across the state for which

we have measurements of both landscape pattern and nutrient loading.
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For the NPS watersheds that were aggregated, the nutrient loading was

summed. All watershed-based estimates of total nitrogen and total phospho-

rous, in kilograms (kg), were divided by the total area, in hectares (ha), in

order to adjust for the varying watershed sizes. Nitrogen was then plotted

against phosphorous, as seen in Figure 2. Clearly, one only needs to pursue

either nitrogen or phosphorous as an indicator of nutrient loading since they

are so highly linearly correlated with each other. Therefore nitrogen was

chosen because it is suspected to yield better quality data than phosphorous.

This suspicion arises because nitrogen loading is always reported well above

zero (minimum for these 30 watersheds = 27.12 kg/ha), whereas phospho-

rous loading is sometimes reported at less than 1 kg/ha, thus indicating that

there were likely to be more measurements near or below analytical detection

limits in the original water quality network samples.

[Figure 2 about here]

Since the objective of this study is to evaluate the effect of land use pat-

terns on surface-water nutrient loading, it was considered to subtract the

portion of total nitrogen loading that was estimated by Nizeyimana, et al.

(1997) to be attributed to atmospheric deposition. However, of the two

primary components of atmospheric nitrogen, ammonium (NH4) was deter-

mined to come almost entirely from volatilization from manure and other

fertilizers; while the other primary component, nitrogen oxides (NOx) was

determined to have about one third contributed by manure and other fertiliz-

ers and about two thirds from industrial/urban sources. Also, natural sources

of atmospheric deposition of nitrogen was considered negligible (Nizeyimana,

et al., 1997). Therefore, since much of the source of atmospheric nitrogen

deposition can be attributed to local land use activity and natural “back-

ground” sources are negligible, total nitrogen loading was kept intact. A

thematic presentation of total nitrogen loading is seen in Figure 5, along with
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the physiographic provinces of Pennsylvania, where the major provinces are

labeled.

[Figure 5 about here]

2.2 Pollution Potential Index

Pennsylvania watersheds that are delineated by the state water plan water-

shed boundaries were evaluated in an earlier study (Hamlett, et al., 1992)

through GIS modeling for ranking each watershed for its nonpoint source

pollution potential. Various statewide data layers (coverages) were analyzed

to produce four different indexes; a runoff index (RI), a chemical use in-

dex (CUI), a sediment production index (SPI) and an animal loading index

(ALI). An overall pollution potential index (PPI) was then computed for

each watershed by:

PPIi = W1(RIi) +W2(SPIi) +W3(ALIi) +W4(CUIi) (1)

for the ith watershed, where W1 to W4 are weights assigned to each in-

put index. The results represent per-acre average values. Petersen, et al.

(1991) show results for an unweighted version of Equation 1 (Wj = 0.25

for j = 1, · · · , 4) and a weighted version where the chemical use index is
weighted downward to W4 = 0.10 and the remaining input indexes were

equally weighted at 0.30. Also, since the model depends heavily on land

cover types, results were presented for both “agricultural land” and “all

land”. While the purpose of the initial study was to evaluate “agricultural”

pollution potential, the purpose of the study being reported in this paper

is to evaluate overall pollution potential. Therefore, we are fortunate that

results were also presented by Petersen, et al. (1991) for “all lands”.

Using the “equally weighted all lands” category, the resulting ranking of

the watersheds are presented thematically in Figure 5. For graphical display

and regression modeling, the ranks are presented in reverse of how they are
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reported by Petersen, et al. (1991) so that the increasing pollution potential

is represented by increasing numerical value. The watersheds are stratified

geographically in Figure 5 by aggregating physiographic sections, which are

nested within physiographic provinces, in order to form more homogeneous

areas with respect to PPI ranks.

[Figure 5 about here]

The original state water plan delineation, for which PPI values were ob-

tained, consists of 104 watersheds; however, the delineation used for ob-

taining landscape measurements consists of 102 watersheds resulting from a

more spatially accurate aggregation of smaller watersheds that were in turn

originally digitized by the USGS. Two of the USGS-source watersheds each

consist of two state water plan watersheds; therefore, out of the resulting 102

USGS-source watersheds, two of them did not have direct PPI assessments.

For this reason, analysis was limited to 100 of the USGS-source watersheds

for which both PPI values and landscape measurements were available. The

two “missing” watersheds are indicated by diagonal hatching in Figure 5.

3 Selecting an Initial Set of Landscape

Pattern Variables

In a separate study (Johnson, et al., in press), landscape variables were mea-

sured for 102 of the state water plan-based watersheds through application

of the FRAGSTATS software (McGarigal and Marks, 1995).

Land cover data, from which measurements were obtained, consisted of

an 8-category raster map of Pennsylvania that was in turn derived from

LANDSAT TM images with a pixel resolution of 30 meters. Details of how

the raw satellite data was processed to derive the raster maps is available

through metatdata located at the Pennsylvania Spatial Data Access web page

(http://www.pasda.psu.edu), under the category of “Terrabyte images”. The
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method and software is available as C-language programs for general use

under the acronym PHASES (Myers, 1999).

The land cover categories are water, conifer forest, mixed forest, broadleaf

forest, transitional, perennial herbaceous, annual herbaceous and terrestrial

unvegetated. The category of transitional land derives from a heterogeneous

mix of land cover types; perennial herbaceous is primarily grassland that

occurs in small patches just about everywhere, but occurs in larger patches

where pastureland is present; annual herbaceous is primarily cropland and is

often adjacent to patches of perennial herbaceous land; meanwhile, terrestrial

unvegetated is primarily urbanized land. The remaining category labels are

self explanitory++. As listed at the end of Table 1, marginal (non-spatial)

land cover measurements that were included for this study are a summation

of all three forest types, then both herbaceous types and finally terrestrial

unvegetated land cover.

[Table 1 about here]

A new multi-resolution characterization of spatial pattern, termed a con-

ditional entropy profile (Johnson, Tempelman and Patil, 1995; Johnson and

Patil, 1998; Johnson, et al., 1998 and 1999) was also obtained for all of the

state water plan-based watersheds (Johnson, et al., in press). These pro-

files quantify landscape fragmentation by measuring entropy of the spatial

distribution of land cover categories at a given raster map resolution in a

way that is conditional on the categories of a coarser-resolution map. When

computed for multiple resolutions, ranging from the “floor” that is provided

by the original raster map to a resolution beyond which conditional entropy

does not change much, a profile is traced out that reflects aspects of the

underlying spatial pattern. Increasingly degraded resolutions are obtained

by a resampling filter. An example profile and its parameterization is seen

in Figure 5. Basically, A is the extent of information that is lost from de-
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grading the map resolution, B is the rate of information loss and C is the

asymptotic conditional entropy that is highly correlated with the entropy of

the marginal (non-spatial) land cover distribution.

[Figure 5 about here]

A set of variables was sought that show little to no correlation among

themselves in order to avoid multicollinearity in regression modeling. There-

fore, an approximately orthogonal subset of spatial pattern variables was

obtained by applying principal components analysis to the full set of pat-

tern variables in Table 1 along with non-linear regression estimates of the

conditional entropy profile parameters A,B and C. The marginal land cover

proportions were excluded from this data reduction exercise because it was

desired to include all of the land cover proportions in the set of potential pre-

dictors. Since this set of variables consists of differing measurement units,

eigen analysis was performed on the correlation matrix. Results for the 30

watersheds that shared both landscape and nitrogen loading measurements

are presented here. When re-applied to all of the 102 watersheds for which

there are landscape measurements, the results were essentially the same and

are therefore not reproduced here.

As seen in Figure 6, the first four components explained over 90% of the

variability in the original multivariate data set. Correlations between the

original variables and the principal components, which are simply the eigen-

vector elements (loadings) multiplied by the square root of the corresponding

eigenvalue (Stiteler, 1979), are reported in Table 2.

[Figure 6 about here]

[Table 2 about here]

The first component is very highly correlated with those variables that

are in turn highly correlated with the marginal land cover distribution. This

component reveals the contrast between watersheds that tend towards being
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more fragmented and more evenly distributed with smaller patches (positive

loadings) and those with a high degree of patch coherence (negative loadings).

Although many of the original variables could be chosen for representing the

first component, contagion (CONTAG) was chosen because it is the most

highly correlated and is a very familiar measurement in landscape ecology.

The second component is mostly correlated with the conditional entropy

profile parameter estimates A and B (note that C is highly correlated with

component 1, as expected). This component contrasts high values of A, and

secondarily the landscape shape index (LSI), as reflected by positive loadings,

with high values of B, as reflected by negative loadings.

The third component is most highly correlated with the fractal dimension

characterization of patch shape (DLFD) and secondarily with the patch size

coefficient of variation (PSCV). Meanwhile, the fourth component is domi-

nated by the landscape shape index.

In view of the results of principal components analysis, the spatial pat-

tern variables that were included in the set of potential regressors were

patch size coefficient of variation (PSCV), landscape shape index (LSI), frac-

tal dimension (DLFD), contagion (CONTAG) and the conditional entropy

profile values A and B. Finally, the proportions of annual herbaceous land

(ANN.HERB), total herbaceous land (TOT.HERB), which is the sum of an-

nual and perennial herbaceous land, and total forest land (TOT.FOREST),

which is the sum of broadleaf, conifer and mixed forest lands, were added to

the set of potential regressors.

Relationships among the final set of potential landscape predictors for

the sample of 30 watersheds containing both landscape and nitrogen loading

measurements are seen in Figure 7, where total nitrogen is also included as a

log transform (logN) for reasons discussed later. One expects the proportion

of annual herbaceous land to be a very strong, if not dominant, predictor
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of total nitrogen loading since it consists mostly of cropland. Agriculture

was determined to be a main source of nitrogen loading in the initial study

(Nizeyimana, et al., 1997).

[Figure 7 about here]

Meanwhile, relationships among the variables for all of the 102 watersheds

are presented in Figure 8 along with the inverse of the PPI rank (PPI.INV).

[Figure 8 about here]

The different land cover proportions plotted in Figures 7 and 8 are highly

inter-correlated, as expected, and some redundancy exists between PSCV and

CONTAG as well as between the values of A and B; however, it is desired

to include all of these variables in the initial set of landscape measurements

in order to see which may be chosen over others as part of a stepwise model

building protocol, as discussed in section 4.

4 Linear Models for Relating Water Pollu-

tion Loading to Landscape Variables

Stepwise regression was applied separately for each response variable—total

nitrogen and pollution potential index—in order to build an optimal linear

model from the potential set of regressors in Figures 7 and 8. The criterion

for choosing the best set of predictors was a modification of Mallow’s Cp

statistic (Mallows, 1973), known as the Akaike Information Criterion (AIC)

(Akaike, 1974). The AIC is related to the Cp statistic by the relation

AIC = σ̂2(Cp + n),

for n observations and σ̂2 equals the mean squared error of the initial model

before adding or deleting a term to yield the “new” p-parameter model

(MathSoft, Inc., 1997, p. 132). The result is

AIC = RSS(p) +MSE ∗ 2 ∗ p , (2)
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where RSS(p) is the residual sum of squares from the new model defined

by p terms (k predictors plus the intercept) and MSE is the mean squared

error from the original model prior to deleting or adding a term.

The automated stepwise selection protocol works by choosing the set of

predictors that minimizes the AIC statistic. Critical F values for deciding

whether or not to include or remove predictor variables was set at 2, subse-

quently erring in favor of retaining large sets of predictor variables.

Models were checked by the usual diagnostic graphics. In addition, par-

tial residual plots were obtained for each regressor in a model. Following

Montgomery and Peck (1982), the ith partial residual for the regressor xj is

e∗ij = yi − β̂1xi1 − · · ·− β̂j−1xi,j−1 − β̂j+1xi,j+1 − · · ·− β̂kxik

= ei + β̂jxij for i = 1, · · · , n. (3)

These partial residual plots display the relationship between y and the regres-

sor xj after the effect of the other regressors xi(i 6= j) have been removed,
therefore more clearly showing the influence of xj , given the other regres-

sors. Along with providing a check for outliers and inequality of variance,

these plots also indicate more precisely how to transform the data to achieve

linearity than do the usual residual plots.

4.1 Predicting In-Stream Nitrogen Loading

Initial analysis was performed using total nitrogen (kg/ha) as the response

variable; however, the resulting model was excessively influenced by two wa-

tersheds from the Piedmont physiographic province (see Figure 5). A natural

log transform substantially reduced the domineering influence of these two

watersheds and yielded other diagnostics that were much better; therefore,

all analyses proceeded with the log of total nitrogen (logN) as the response

variable.
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The graphical relationship of logN with the potential predictor variables

is seen in Figure 7. Although this shows a fairly strong linear relationship

between logN and the marginal land cover measurements, that in turn all

appear highly correlated among themselves, some of the other potential pre-

dictors may also explain a significant portion of the variability in observed

logN. Actually, scatter diagrams can be misleading in the case of multiple

regression, as pointed out by Montgomery and Peck (1982, p. 122), who cite

Daniel and Wood (1980).

Preliminary analysis showed that when all 30 of the NPS watersheds were

included, the only variable retained by the stepwise selection procedure was

the proportion of annual herbaceous land (ANN.HERB); however, when sepa-

rate analyses were performed within each major physiographic province, very

different results were obtained. For the 12 watersheds of the Appalachian

Plateaus, all but the landscape shape index were retained. Since the Ridge

and Valley had only 7 NPS watersheds, they were combined with the Pied-

mont, which reveals similar forest fragmentation patterns. For the 18 water-

sheds of the combined Piedmont / Ridge and Valley Province group, annual

herbaceous land was retained along with the fractal dimension (DLFD) and

both the A and B values of the conditional entropy profiles.

Upon seeing large differences in the resulting models, given the phys-

iographic region, and desiring to maximize the residual degrees of freedom

associated with any final model, the analysis was continued by combining all

30 watersheds from across the state and including an indicator (0,1) vari-

able (sometimes called a dummy variable) for designating membership in

a physiographic region. The indicator variable, which was forced to be re-

tained by the stepwise protocol, was coded with 1 (one) if the corresponding

watershed was from the Piedmont/Ridge and Valley group, and a 0 (zero)

otherwise. The resulting parameter estimate revealed the increase (or de-
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crease) in total nitrogen loading as one moves from the Appalachian Plateaus

to the Piedmont/Ridge and Valley group. A further advantage of factoring

out pyhsiographic regions is to reduce deleterious effects of possible spatial

autocorrelation.

Coefficient estimates for the model that minimized the AIC statistic (AIC

= 2.84) are reported in Table 3, where the dummy variable indicating the

effect of province group is labeled as PIED.RV.

[Table 3 about here]

Diagnostic plots for the model defined in Table 3 revealed a strong linear

relationship between the fitted and observed values, along with randomly

scattered residuals. A Q/Q plot revealed somewhat heavy tails in the dis-

tribution of residuals; however, none of these observations were excessively

influential according to Cook’s Distance. Generally, a Cook’s Distance of 1 or

greater is considered to reveal an overly influential observation (Montgomery

and Peck, 1982; Neter, Wasserman and Kutner, 1985) which is far greater

than the worst case. These diagnostics therefore revealed a very acceptable

model.

The partial residual plots for each quantitative predictor in Table 3 ap-

pear in Figure 9 where the lines of fit have slopes equal to the parameter

estimates in Table 3. The plots in Figure 9 indicate a linear trend for each

predictor, especially for annual herbaceous land (ANN.HERB), and no data

transformations appear to be necessary.

[Figure 9 about here]

All possible interactions between the quantitative variables and the indi-

cator variable were investigated, but none of these interactions turned out to

be at all significant. When interactions were evaluated among the quan-

titative variables, the two-way interaction between LSI and ANN.HERB

was significant (p = 0.025). However, when the model parameters were
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re-computed, including LSI*ANN.HERB as the only interaction term, the

estimate of the ANN.HERB coefficient became negative, which is nonsense.

Therefore, the initial additive model in Table 3 was retained.

spatial autocorrelation

The presence of spatial autocorrelation was evaluated by plotting residuals

from the model defined in Table 3 as a function of geographic distance of

the center of each watershed from the center of the watershed yielding the

maximum residual. Selecting the initial watershed (distance = 0) is rather ar-

bitrary, but it was felt that the most likely trend would be a general decrease

in nitrogen loading as one moves away from a “hot-spot” watershed; therefore

starting with the watershed yielding the maximum residual may help distin-

guish such a downward trend. Finally, since the indicator variable Pied.RV

already serves to factor out a major spatial component, distance measure-

ments were made within each of the two physiographic province groups.

Figure 10 plots the residuals as a function of distance. Keep in mind that

an initial downward trend will always occur between the initial watershed and

the next closest one since the initial one was chosen from yielding the largest

residual; therefore, focus should be on all but the initial watershed. The

Piedmont/Ridge and Valley did not visually reveal any spatial dependence,

which was quite encouraging; however, the Appalachian Plateaus did reveal

a downward trend that was followed by an upturn. This quadratic type

response is due to a downward trend as one moves from watersheds near

Pittsburgh on northward through mixed agricultural areas, then eastward to

mostly forested areas, then further eastward to the Pocono region along the

Delaware River.

[Figure 10 about here]

As an attempt to overcome the autocorrelated residuals in the Appalachian
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Plateaus, watersheds in this physiographic province were further separated

into two groups according to the finer scaled physiographic sections. After

forcing two indicator variables to be retained for representing three spatial

groups, the stepwise selection protocol yielded a similar model to that in

Table 3 with the exception that fractal dimension (DLFD) was replaced by

contagion (CONTAG).

Diagnostic plots, however, indicated that model quality had somewhat

decreased. Furthermore, small sample sizes within each of the newly defined

groups of physiographic sections within the Appalachian Plateaus physio-

graphic province made it difficult to truly discern any residual autocorre-

lation. Therefore, the model in Table 3 was chosen. One should consider,

however, that the mean squared error may slightly underestimate the true

variance due to some positive spatial autocorrelation.

4.2 Predicting a Pollution Potential Index

Unlike with nitrogen loading, the pollution potential data can be treated as

observations on a population of watersheds (100 out of 102). Since the com-

puted linear coefficients are actually parameter values, standard errors are

not relevant and thus are not reported. However, it is still sensible to choose

an optimal set of predictors by minimizing the AIC statistic. Furthermore,

t-scores and p values are still reported in order to see the significance of each

term, relative to the other terms.

For the purpose of regression modeling, the five geographic strata that

appear in Figure 5 are represented by four indicator variables that are ex-

plained in Table 4. These indicators were forced to be retained by the model

selection protocol in order to factor out physiographic effects and minimize

possible spatial autocorrelation. The resulting parameter estimates reveal

the increase (or decrease) in average PPI rank as one moves from the “Pitts-
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burgh Plateaus/Allegheny Mountains” group to the group being represented

by the respective indicator variable. The model that minimized the AIC

statistic is presented in Table 4.

[Table 4 about here]

Diagnostic plots for the model defined in Table 4 revealed a very strong

linear relationship between the fitted and observed values, along with thor-

oughly randomly scattered residuals. A Q/Q plot revealed that the residuals

are closely approximated by the normal distribution. Further, none of these

observations are excessively influential according to Cook’s Distance. Con-

sequently, these diagnostics reveal a very acceptable model.

The partial residual plots for each quantitative predictor in Table 4 appear

in Figure 11. The lines of fit in Figure 11 have slopes equal to the parameter

estimates in Table 4. The plots in Figure 11 indicate a linear trend for each

predictor, and no data transformations appear to be necessary.

[Figure 11 about here]

5 Interpretation

The chosen model for relating total nitrogen loading (kg/ha) to landscape

characteristics within Pennsylvania watersheds that are delineated based on

the state water plan is as follows:

ln(N) = 12.78 + 0.42(Pied.RV) + 3.24(ANN.HERB)

+0.0034(LSI)− 5.89(DLFD)− 0.41(A), (4)

where the associated statistics for the parameter estimates based on a sample

of 30 watersheds, and an explanation of the variable labels are found in Table

3. The associated variance σ2 is estimated by MSE=0.075, although this

might be a slight underestimate due to some spatial autocorrelation in the

Appalachian Plateaus.
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As expected, the dominant regressor is the proportion of annual herba-

ceous land which, in turn, is mainly cropland. Further, given the propor-

tion of annual herbaceous land and physiographic membership, landscape

pattern strengthened the explanation of nutrient loading variability among

these Pennsylvania watersheds, as measured through total nitrogen loading.

The landscape shape index (LSI), the fractal dimension estimate (DLFD)

and the estimate of conditional entropy profile “depth” (A) were all retained

by the stepwise selection procedure which aims to minimize the residual sum

of squares and corresponding AIC statistic out of all possible regressions.

The slight, but significant, positive relation to the landscape shape index

indicates that nitrogen loading may be expected to increase as the landscape

becomes more fragmented, resulting in more edges.

A negative relation to the value “A” is not readily interpretable; however,

it is noteworthy that this predictor and LSI were both always retained by

the stepwise selection procedure whether the physiography indicator variables

were designed to differentiate among the 3 major provinces (results not shown

here), the 2 province groups (Appalachian Plateaus vs. Piedmont/Ridge and

Valley) or the 3 groups that consisted of the Piedmont/Ridge and Valley and

2 sub-areas of the Appalachian Plateaus.

The chosen model for relating the pollution potential index (PPI) rank to

landscape characteristics within Pennsylvania watersheds that are delineated

based on the state water plan is as follows:

PPI rank = 445.2− 6.3(APP. MOUNTAIN)
+15.72(PIED. and GR. VALLEY)

−2.35(LOW and POCONO)− 12.43(HIGH PLATEAUS)
+118.9(TOT.AG)− 330.2(DLFD)− 1.0(CONTAG)
+27.8(A) + 110.4(B), (5)

18



where an explanation of the variable labels is found in Figure 8 and Table 4.

The dominant regressor is the proportion of total herbaceous land; how-

ever, results show that given the proportion of total herbaceous land and

physiographic membership, that landscape pattern still strengthens the ex-

planation of surface water pollution potential variability among these Penn-

sylvania watersheds.

The negative relation to fractal dimension is consistent with the nitrogen

loading results. A negative relation makes sense because when landscape

patches are left to natural forces, they tend towards having more irregular

outlines, which is reflected by an increasing fractal dimension (or perime-

ter/area scaling exponent) (Johnson, Tempelman and Patil, 1995), while

patches that are created and maintained by humans tend to have straight

edges, especially with cropland that is in turn largely responsible for nutrient

loading. As the average landscape patch tends towards having a straighter

edge, this is reflected by a fractal dimension estimate that tends towards a

value of 1, the dimension of a Euclidean line. A negative relation to contagion

is likely due to the highest levels of contagion being associated with mostly

forested watersheds. Although both conditional entropy profile variables A

and B are retained by the stepwise protocol, a mechanistic explanation of

their relation to PPI is not necessarily clear.

As an exploratory exercise, nine watersheds were chosen to include the

top three, middle three and lowest three nitrogen loading values, and this

was repeated for the PPI values. Their corresponding conditional entropy

profiles appear in Figures 12 and 13. For both nitrogen loading and the

PPI, the three least polluted watersheds are clearly separate from the others

which, in turn, are essentially grouped together. These three watersheds with

the lowest pollution potential are mostly forested watersheds from the High

Plateaus or Poconos and consistently reveal lower profiles that are “intrin-
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sically less fragmented” than the other six profiles. Although these profiles

do not reveal apparently large differences in A and B values, the model for

predicting nitrogen loading benefitted from including A and the ability to

predict pollution potential was strengthened from including both A and B.

[Figure 12 about here]

[Figure 13 about here]

In summary, the best landscape-level predictor of water pollution for these

Pennsylvania watersheds is the marginal land cover proportions. A major-

ity of nitrogen loading variability was explained by the proportion of annual

herbaceous land, which is mostly row crops. Meanwhile, variability of the pol-

lution potential index was largely explained by total herbaceous land, which

includes annual and perennial herbaceous land. This finding agrees with re-

sults by Roth, et al.. (1996), who found that stream biotic integrity was

significantly correlated with the proportion of agricultural land throughout

a whole watershed. These authors further concluded that stream conditions

are primarily determined by regional land use, overwhelming the ability of

local riparian vegetation to support high quality habitat. Also, Hunsaker

and Levine (1995) determined that nitrogen, phosphorous and conductivity

were all primarily dictated by land use proportions and they further cite

other studies that lead to similar findings. This is all quite encouraging be-

cause once a reliable land cover map is in place, the marginal land cover

proportions are readily available; therefore, without any further information,

one can make a fairly strong prediction of surface-water quality within a

watershed.

We, however, found that additional measurements of spatial pattern for

these watershed-delineated landscapes in Pennsylvania can significantly strengthen

the predictability of pollution loading within the watershed. Furthermore,

some aspects of the multi-resolution conditional entropy profiles were consis-
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tently retained by an objective variable selection protocol.
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Table 1: Landscape variables measured for Pennsylvania watersheds.

Variable Description Code

Patch Density PD

Mean Patch Size MPS

Patch Size Coefficient of Variation PSCV

Edge Density ED

Landscape Shape Index LSI

Area-Weighted Mean Shape Index AWMSI

Double-Log Fractal Dimension DLFD

Area-Weighted Mean Patch Fractal Dimension AWMPFD

Shannon Evenness Index SHEI

Interspersion and Juxtaposition Index IJI

Contagion† CONTAG

Total Forest Cover TOT.FOREST

Total Herbaceous Cover TOT.HERB

Terrestrial Unvegetated TU

note that diagonal pixels were included when determining patches

† pixel order preserved when measuring contagion



Table 2: Correlations between the original variables and the first five
principal components.

variable comp 1 comp 2 comp 3 comp 4 comp 5

PD 0.94 -0.18 0.20 0.07 -0.09

MPS -0.93 0.22 -0.14 -0.03 0.14

PSCV -0.78 0.02 0.53 0.16 -0.24

ED 0.94 -0.24 0.13 0.03 0.12

LSI 0.23 0.69 0.07 0.62 0.26

AWMSI -0.84 -0.09 0.46 0.18 -0.12

DLFD 0.6 -0.04 0.63 -0.24 0.39

AWMPFD -0.93 -0.01 0.31 -0.1 -0.04

SHEI 0.96 0.19 0.10 -0.07 -0.10

IJI 0.87 0.15 0.15 0.07 -0.38

CONTAG -0.99 -0.02 -0.10 0.01 0.05

A 0.00 0.93 -0.20 -0.15 -0.11

B 0.26 -0.84 -0.3 0.3 -0.01

C 0.94 0.29 0.01 -0.02 -0.03



Table 3: Coefficients and corresponding statistics from regressing the log of
total Nitrogen/ha against quantitative landscape variables and an indicator
variable for specifying membership in a physiographic province group.

Regressor∗ Value Std. Error t value Pr(> |t|)

Intercept 12.7805 4.9614 2.5760 0.0166

Pied.RV 0.4178 0.1950 2.1424 0.0425

LSI 0.0034 0.0015 2.3090 0.0299

DLFD -5.8933 3.1854 -1.8501 0.0766

ANN.HERB 3.2441 0.8123 3.9936 0.0005

A -0.4102 0.2271 -1.8058 0.0835

∗Pied.RV reflects change due to membership in the

Piedmont/Ridge and Valley group of physiographic provinces,

relative to the Appalachian Plateau.

LSI = Landscape Shape Index, DLFD = Fractal Dimension estimate,

ANN.HERB = proportion of Annual Herbaceous land, and

A = estimate of conditional entropy profile depth.

mean squared error (24 d.f.) = 0.075; multiple R2 = 0.74



Table 4: Linear coefficients from regressing the PPI rank against quantitative
landscape variables and physiographic indicator variables. Mean squared
error = 245.55 (90 d.f.) and multiple R2 = 0.76.

Regressor∗ Coefficient t value Pr(> |t|)

Intercept 445.2282 1.79 0.0762

APP. MOUNTAIN -6.2750 -1.09 0.2788

PIED. and GR. VALLEY 15.7200 2.44 0.0167

LOW and POCONO -2.3516 -0.35 0.7252

HIGH PLATEAUS -12.4292 -1.88 0.0638

DLFD -330.2211 -2.46 0.0159

CONTAG -0.9732 -2.19 0.0311

TOT.HERB 118.9058 5.01 0.0000

A 27.8007 2.26 0.0261

B 110.3800 2.61 0.0107

∗Labels for the quantitative variables are explained in Figure 8

APP. MOUNTIAN = Appalachian Mountain Section

PIED. and GR.VALLEY = the Piedmont Plateau and Great Valley Section

LOW and POCONO = Glaciated Low and Pocono Plateau Sections

HIGH PLATEAUS = High and Mountainous High Plateau Sections



Figure 1: Watersheds from the NPS study (above), for which nutrient load-
ings are available, and watersheds based on the state water plan (below), for
which landscape pattern measurements are available. Those NPS watersheds
that can be aggregated to equal a state water plan watershed are indicated
by grey above, and the final set of watersheds that have both landscape
measurements and nutrient loading are in grey below.

Figure 2: Total Nitrogen vs Total phosphorous (kg/ha).

Figure 3: Thematic presentation of nitrogen loading in kilograms per hectare
for 30 watersheds.

Figure 4: Thematic presentation of the pollution potential ranking for each
of the state water plan-based watersheds. Physiographic stratification delin-
eates more homogeneous geographic areas.

Figure 5: Anatomy of a conditional entropy profile.

Figure 6: Variance contributed by the first ten principal components; cumu-
lative variance is labeled above each bar.

Figure 7: Pairwise scatterplots of the final set of potential predictor variables
(regressors) along with the natural logarithm of total nitrogen per hectare
(logN) for 30 watersheds. The spatial pattern variables are as follows: PSCV
= Patch Size Coefficient of Variation, LSI = Landscape Shape Index, DLFD
= Double Log Fractal Dimension, CONTAG = contagion and conditional
entropy profile parameter estimates (A,B). Marginal land cover proportions
are ANN.HERB = annual herbaceous, TOT.FOREST = total forest and
TOT.HERB = total herbaceous.

Figure 8: Pairwise scatterplots of the set of potential predictor variables
(regressors) along with the inverse of the pollution potential index (PPI.INV)
for 102 watersheds. The landscape variables are explained in Figure 7.

Figure 9: Partial residual plots for the predictors listed in Table 3. Slopes of
the fitted lines equal the parameter estimates in Table 3.

Figure 10: Residuals plotted as a function of geographic distance of the corre-
sponding watershed from the watershed that yielded the maximum residual,
given either the Appalachian Plateau or the Piedmont/Ridge and Valley
physiographic province group.



Figure 11: Partial residual plots for the quantitative predictors listed in Table
4. Slopes of the fitted lines equal the linear coefficients in Table 4.

Figure 12: Conditional entropy profiles for watersheds containing the top 3,
middle 3 and bottom 3 nitrogen loadings.

Figure 13: Conditional entropy profiles for watersheds containing the top 3,
middle 3 and bottom 3 PPI values.
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